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1 Introduction

Throughout these notes definable means definable with parameters, unless oth-
erwise stated.

Definition 1. The structure R := 〈R,<, . . .〉 is said to be o-minimal if the
only definable subsets of R are finite unions of intervals and points, ie. those
sets definable with just the ordering.

Example 1. The real field R = 〈R, <,+, ·, 0, 1〉 is o-minimal. This is a conse-
quence of Tarski’s theorem that R admits quantifier elimination. In fact we may
conclude something stronger. Let φ(x) be a formula in the language of R with
parameters from R. Writing φ(x) as

∧
i

∨
j pij(x)�ij0, where �ij ∈ {<,=} and

pij ∈ R[X], we see that we have an upper bound, namely Σij deg(pij), on the
set of points needed to describe φ(R) which is independent of the parameters
used in φ.

This is a special case of the following general property of definable families
in o-minimal structures over the reals:

Theorem 1. Let R∗ be any o-minimal expansion of 〈R, <〉 and suppose that
φ(x̄, ȳ), where x̄ and ȳ are tuples of length n and m respectively, is a (parameter-
free) formula in the language of R∗. Then there exists N ∈ N such that for all
ā ∈ Rn the set {b̄ ∈ Rm : R∗ � φ(ā, b̄)} has at most N connected components.
Furthermore each connected component is definable.

Remark 1. Using this theorem we can deduce that o-minimality is preserved
under elementary equivalence.

1.1 o-minimality via model completeness

Definition 2. We say that a first-order theory T is model complete if, modulo
T , every formula is equivalent to an existential formula. When we say that a
structure is model complete we mean that its theory is model complete.
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Theorem 2 (Robinson’s test for model completeness). Let T be a first-order
theory. Suppose that T has the following property:

For any M,N � T such that M ⊆ N , and any quantifier-free for-
mula φ(v̄) with parameters in M, if N � ∃v̄φ(v̄) then M � ∃v̄φ(v̄).

Then T is model-complete.

Theorem 3. Let R∗ be an expansion of 〈R, <〉 and suppose that:

1. for all n ∈ N every quantifier-free definable subset of Rn has finitely many
connected components.

2. the theory of R∗ is model-complete.

Then our structure R∗ is o-minimal.

Proof. Let X be a definable subset of R∗. By the model-completeness of R∗ X
is defined by an existential formula ∃ȳφ(ȳ, x), i.e. φ(ȳ, x) is quantifier-free. The
set, Y say, defined by φ(ȳ, x) must have finitely many connected components.
X is the image of Y under the projection map π : 〈ȳ, x〉 → x so must have
finitely many connected components also. The only connected subsets of R are
intervals and points so X is of the desired form.

Henceforth, R̃ := 〈R,F〉 where F is some collection of functions from Rn to
R, for various n.

Definition 3. We call a term in the language of R̃ simple if has the form τ(x̄) =
p(x1, . . . , xn, F1(x̄(1)), . . . , Fs(x̄(s))), where x̄ = (x1, . . . , xn), p(x1, . . . , xn, y1, . . . , ys) ∈
R[x1, . . . , xn, y1, . . . , ys], F1, . . . Fs ∈ F and the x̄(i) are subsequences of x̄ of
suitable length.

For example, if F = {exp} then a simple term is of the from

p(x1, . . . , xn, e
x1 , . . . , exn).

Theorem 4. For R̃ := 〈R,F〉 as above, every existential formula in the lan-
guage of R̃ is equivalent, modulo the theory of R̃, to one of the form ∃ȳ(τ(ȳ, x̄) =
0) where τ is a simple term.

Proof. Exercise.
Hint: f(g(x̄)) = 0 iff ∃y(y = g(x̄) ∧ f(y) = 0) iff ∃y(f(y)2 + (g(x̄) − y)2 =

0)

2 Khovanski’s Theorem

Many early attempts to prove o-minimality were based on Khovanski’s finiteness
theorem.

Notation. For U ⊆ Rn open and m ∈ N ∪ {∞}, Cm(U) denotes the set of all
functions f : U → R that are m-times continuously differentiable on U .
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Definition 4. Let U ⊆ R. A sequence f1, . . . , fr ∈ C1(U) is called a Pfaffian
chain if there exist polynomials pi(x, y1, . . . , yi) ∈ R[x, y1, . . . , yi], for i = 1 . . . r,
such that for all x ∈ U

f ′1(x) = p1(x, f1(x))
f ′2(x) = p2(x, f1(x), f2(x))

...
f ′r(x) = pr(x, f1(x), . . . , fr(x)).

More generally, if U ⊆ Rn, we require polynomials pij(x1, . . . , xn, y1, . . . , yi)
for j = 1, . . . , n, i = 1, . . . , r such that

∂fi

∂xj
(x1, . . . , xn) = pij(x1, . . . , xn, f(x1, . . . , xn), . . . , fi(x1, . . . , xn)).

We say that a function f ∈ C1(U) is Pfaffian if f(x̄) = q(x̄, f1(x̄), . . . , fr(x̄)) for
some polynomial q and some Pfaffian chain f1, . . . , fr on U .

The following facts about Pfaffian functions are left as exercises.

Exercise 1. 1. If f ∈ C1(U) is Pfaffian then f ∈ C∞(U).

2. The class of Pfaffian functions includes many well-known and commonly
occurring functions, for example exp on R, log on (0,∞), sin on (0, π) and
all rational functions on their domains.

3. The class of Pfaffian functions is closed under many operations, for ex-
ample, paying close attention to domains, composition, differentiation,
integration and extracting roots via the implicit function theorem.

Theorem 5 (Khovanski’s finiteness theorem). Let U ∈ Rm be an open box and
suppose that f ∈ C∞(U) is Pfaffian. Then there exists a natural number n,
depending only upon the degrees of the pij’s and the q as in definition 4, such
that Z(f) := {x̄ ∈ U : f(x̄) = 0} has at most N connected components.

Exercise 2. Prove the following special case of theorem 5: Let U ⊆ R be an
interval, and let f ∈ C∞(U) \ 0 satisfy f ′(x) = p(x, f(x)) for some p(x, y) ∈
R[x, y]. Prove that f has only finitely many simple zeroes. Find a bound n in
terms of deg(p). Now use Sard’s Theorem to prove that f has only finitely many
zeroes (approximate all zeroes by simple zeroes of a slightly different function).
If you can extend this result to q(x, f(x)), for q(x, y) ∈ R[x, y], then you are
well on the way to seeing the general case.

Exercise 3. Prove that sin : R → R is not Pfaffian but sin : (0, π) → R is. What
about sin : (0, 2π) → R?

Now let f1, . . . , fr be a Pfaffian chain on some open box U ⊆ Rn. Suppose
we would like to show that R̃ := 〈R̄, f1, . . . , fr〉 is o-minimal (set fi(x̄) = 0 if
x̄ /∈ U). By theorems 3 and 5 it is sufficient that R̃ is model complete.

In fact, we only know the model completeness of R̃ in a few cases:

3



1. n = r = 1, U = R and f1 = exp : x 7→ ex.

2. arbitrary n, r but on bounded U such that f1, . . . fr have extensions, sat-
isfying the same differential equations, to some open box V with Ū ⊆ V .

However the o-minimality of R̃ is known in general, but by different methods.

3 Real analytic functions

Let U ⊆ R be an open interval and let f ∈ C∞(U). For x0 ∈ U , we form the
(formal) Taylor series of f around x0:

T f
x0

(x) = Σ∞
i=0

f (i)(x0)
i!

(x− x0)i (1)

Then f is called analytic at x0 if there exists r > 0 (with (x0 − r, x0 + r) ⊆ U)
such that for all y ∈ (x0 − r, x0 + r) the series of real numbers T f

x0
(y) converges

with sum f(y). We say that f is analytic on U if it is analytic at x0 for all
x0 ∈ U .

Exercise 4. Let f ∈ C∞(U) where U is an open interval in R. Prove that the
following are equivalent:

1. f is analytic on U.

2. for each compact set K ⊆ U there exists a constant C > 0 such that for
all i ≥ 0 and for all x ∈ K, |f (i)(x)| ≤ Ci+1i!

The definition of an analytic function generalizes easily to many variables
once we have introduced multi-index notation. The result in exercise 4 also
generalizes. One just replaces x, x0 by tuples, and i by a multi-index:-

Notation. An element α = 〈α1, . . . , αn〉 ∈ Nn is called a multi-index. We set

|α| := α1 + . . .+ αn

α! := α1! . . . αn!

f (α) :=
∂|α|f

∂xα1
1 . . . ∂xαn

n

x̄α := xα1
1 . . . xαn

n where x̄ = (x1, . . . , xn)

We write Cω(U) for the set of analytic functions on U , where U is an open subset
of Rn for some n.

Fact 1. 1. The class of analytic functions is closed under composition, dif-
ferentiation, integration and extracting roots via the implicit function the-
orem.

2. Every Pfaffian function is analytic on its domain.
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3. If f is analytic on a connected open neighbourhood U of the point x0 and
f (α)(x0) = 0 for all α ∈ Nn then f ≡ 0 on U .

Definition 5. For n ∈ N \ {0} we define to Gn to be the set of restrictions
to [−1, 1]n of analytic functions defined on open neighbourhoods of [−1, 1]n,
ie. f : [−1, 1]n → R ∈ Gn iff there exists an open box V with [−1, 1]n ⊆ V
and g ∈ Cω(V ) such that f = g �[−1,1]n . We let G0 := R and now define
Ran := 〈R̄,

⋃
n≥0 G〉 (we set our functions to zero outside the unit box).

We have the following theorems about the structure Ran.

Theorem 6 (Gabrielov (1969)). Ran is model complete.

Theorem 7 (Denef, van den Dreis [1]). 〈Ran, D〉 admits quantifier elimination,
where

D : R2 → R : (x, y) 7→
{ x

y |x| ≤ |y| 6= 0
0 otherwise.

4 Some local theory of analytic functions

Definition 6. Let

• I be the interval [−1, 1] in R;

• Lan be the language which has, for each n ≥ 0 and each f ∈ Gn (see
definition 5), a function symbol of arity n.

• the language LD
an be {D(·, ·), <} ∪ Lan;

• and, finally, I be the LD
an-structure defined on the domain I by interpreting

any function symbol in LD
an as the analytic function it names, D as

D(x, y) =

{
x
y if |x| ≤ |y| and 0 < |y|
0 otherwise,

and < in the usual way (moreover we will use >, ≤ and ≥ as shorthands
for the corresponding definitions in terms of < and =).

We are interested in proving the following

Theorem 8. The structure I has quantifier elimination.

This implies theorem 7.

Proof that theorem 8 implies theorem 7. Let L be the language of our 〈Ran, D〉.
Observe that 〈Ran, D〉 can be interpreted in I by mapping each x ∈ R to the
unique pair (a, b) ∈ I2 such that a

b = x and either a or b (or both) is 1. Moreover
each quantifier free LD

an-formula is, ipso facto, an L-formula. Hence, suppose
we want to eliminate the quantifiers in some L-formula φ(x1, . . . , xn): we first
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consider its interpretation as an LD
an-formula ψ(a1, b1, . . . , an, bn), then, by the-

orem 8, we have an equivalent quantifier free LD
an-formula ψ′(a1, b1, . . . , an, bn),

and, finally, we notice that φ is equivalent in 〈Ran, D〉 to an appropriate boolean
combination of the formulæ|xi| ≤ 1 and instances of ψ′ with ai and bi replaced
respectively by either xi and 1 or D(1, xi) and 1.

Notice that, even if the symbols D and < in the language LD
an are definable

in Lan, we are not able to achieve the QE without them.
Definition and facts
First of all we will recall some definitions and facts about the real analytic

functions.

Definition 7. The ring On
x of germs of analytic functions at x is defined as

the quotient of the ring of functions from Rn to R which are analytic on a
neighbourhood of 0 by the equivalence relation ∼x defined by

f ∼x g ↔ ∃ε > 0 ∀y |x− y| < ε→ f(y) = g(y)

i.e. identifying functions which are pointwise equal in some neighbourhood of
x.

Of course, On
0 is isomorphic to the ring R 〈x1, . . . , xn〉 of the power series in

n variables convergent in some neighbourhood of 0. This observation enables
us to state the following

Fact 2. The ring R [[x1, . . . , xn]] of formal power series in n variables is faith-
fully flat over the ring On

0 . In particular, a linear equation with coefficients in
On

0 has a solution in On
0 if and only if it has one in R [[x1, . . . , xn]].

We will need the Weierstrass preparation theorem. Let us first introduce the
following definition.

Definition 8. Let f ∈ On+1
0 . We say that f is regular of degree d in the

variable xn+1 if f has non-vanishing dth derivative in xn+1 at 0 and zero ith
derivative in xn+1 at 0 for all i < d. We say that f is regular if it is regular of
degree d for some d.

Theorem 9 (Weierstrass preparation theorem). Let f(x1, . . . , xn+1) ∈ On+1
0

be a germ of analytic functions which is regular of degree d in xn+1. Then

f = u · p

where u is a unit of On+1
0 , and p is a monic polynomial in the indeterminate

xn+1 of degree d with coefficients in On
0 .

Overview of the proof
In the proof we will often deal with terms and formulæ in two sets of vari-

ables. We will write them as φ(x̄, ȳ), where x̄ represents an m-tuple of variables
and ȳ represents an n-tuple of variables. Moreover we will call simple a formula
or term in which no instance of D is applied to a term involving any of the
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variables in ȳ. The symbols i and j will be used to denote multiindices in Nn,
the norm |i| of a multiindex is the maximum of its components.

We are now ready to prove the QE theorem. By a well known observation,
all we have to prove is that for any quantifier free LD

an-formula φ(x̄, y) exists a
quantifier free LD

an-formula ψ(x̄) such that

I � ∃yφ(x̄, y) ↔ ψ(x̄)

(where x̄ represents any number of free variables).
Our strategy is to find a new quantifier free LD

an-formula φ′ which is simple
and satisfies

I � ∃yφ(x̄, y) ↔ ∃ȳφ′(x̄, ȳ)

(thus eliminating the Ds at the expense of an increase in the number of exis-
tential quantifiers).

Now we have a string of n existential quantifiers to eliminate, and suppose by
induction that we can eliminate n−1 existential quantifiers (in front of a simple
formula). Our goal is to reduce the formula ∃ȳφ′(x̄, ȳ) to a boolean combination
of simple formulæ each of which has at most n− 1 existential quantifiers, thus
concluding by induction.

More specifically, assuming φ′ to be just an Lan-formula (a detail which
has no influence on the argument overall), we will prove that for any (p̄, q̄) ∈
Im × In there exists an ε(p̄,q̄) > 0 and a simple quantifier free LD

an-formula
φ′′(p̄,q̄)(x̄, z1, . . . , zn−1) such that

I � ∃ȳφ′(p̄+ ε(p̄,q̄)x̄, q̄ + ε(p̄,q̄)ȳ) ↔ ∃z̄φ′′(p̄,q̄)(x̄, z̄)

This means that for any point (p̄, q̄) ∈ Im × In we can get a simple formula
which is equivalent to our one restricted to a neighbourhood of that point and has
one quantifier less. Finally, we will conclude that, by compactness of Im × In,
∃ȳφ′(x̄, ȳ) is equivalent to a boolean combination of just a finite number of such
formulæ.

Of course, our assumption that φ′ is an Lan-formula can be easily fulfilled
by replacing each instance of D with a dummy variable and then substituting
the original terms back in φ′′.

Details of the proof
The first step is easily concluded by replacing any (annoying) occurrence of

D with its definition

I � z = D(x, y) ↔ (x2 ≤ y2 → x = zy) ∧ ((x2 > y2 ∨ y = 0) → z = 0)

(in which all functions, i.e. square and product, are in Lan) existentially quan-
tifying the dummy variable z.

For the second step, we will work locally around (p̄, q̄). To simplify notation,
we suppose, without loss of generality, that (p̄, q̄) = 0; moreover we make the
assumption that each atomic subformula of φ′ is of the form t(x̄, ȳ) > 0 with t a
term in the language Lan. Our aim, now, is to find a suitable value for ε = ε(p̄,q̄)

as described above, thus filling in the missing part of the argument.
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Of course, if an existentially quantified variable, say yn, occurs in φ′ just
polynomially (i.e. if each term of φ′ is a polynomial in the indeterminate yn

whose coefficients are analytic functions in the remaining variables) then we
can eliminate it by Tarski’s theorem (possibly multiplying each polynomial by
a small enough constant in order to constrain the coefficients in I).

Now, the Weierstrass preparation theorem provides us with a tool for making
a variable occur just polynomially, at least locally. So, were each term in φ′

regular in yn , we could rewrite it locally around (p̄, q̄), which is around 0 by
our assumption, so that yn occurs just polynomially. More specifically, if we can
write each term in φ′ as t = u ·f locally at 0, with suitable f ∈ Om+n−1

0 [yn] and
unit u ∈ Om+n

0 , supposing without loss of generality u > 0 in a neighbourhood
of 0, then we have for a small enough ε > 0

I � t(εx̄, εȳ) > 0 ↔ f(εx̄, εȳ) > 0

which is sufficient to conclude by taking a value of ε small enough to work for
every term in φ′, and invoking Tarski’s theorem as per the previous observation.

Hence, the rest of this section will be devoted to refining this argument in
order to deal with the general case (when some of the terms may not be regular
in yn+1 at (p̄, q̄), which we assumed to be 0).

Lemma 1. For any f(x̄, ȳ) ∈ Om+n
0 there is a positive integer d such that

f(x̄, ȳ) can be written as

f(x̄, ȳ) =
∑
|i|<d

ai(x̄)ȳiui(x̄, ȳ)

with ai ∈ Om
0 and ui units of Om+n

0 .

Proof. By induction on n.
Case n = 1. Write the power series f(x̄, y) =

∑
k ak(x̄)yk with ak(x̄) ∈

R 〈x1, . . . , xm〉. Since R [[x1, . . . , xm]] is noetherian, there is an integer d such
that the ideal generated by all the ak(x̄) is already generated by the ak(x̄) with
k < d. Hence we can find the units uk in R [[x1, . . . , xm, y]], and, by fact 2, even
in R 〈x1, . . . , xm, y〉.
Case n > 1 By induction we can write

f(x̄, ȳ) =
∑
|i|<d

ai(x, y1)(y2, . . . , yn)iui(x̄, ȳ)

from which we can conclude applying the case n = 1 to each of the ai(x, y1).

We are going to analyze an atomic sub formula of φ′: t(x̄, ȳ) > 0. By the
lemma we can rewrite t as

∑
|i|<d ai(x̄)ȳiui(x̄, ȳ) in some neighbourhood of 0.

Unless specified otherwise, each formula from now on is to be intended for (x̄, ȳ)
in that neighbourhood of 0.
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Let µj(x̄) be the formula

aj(x̄) 6= 0 ∧

 ∧
|i|<d

|aj(x̄)| ≥ |ai(x̄)|


we observe that by shrinking the neighbourhood if neccessary we get

t(x̄, ȳ) > 0 ↔
∨
|j|<d

(µj(x̄) ∧ t(x̄, ȳ) > 0) (*)

(take j such that |aj(x̄)| is maximal, etc). We now focus on a single j, analyzing
further the formula µj(x̄) ∧ t(x̄, ȳ) > 0.

Introducing the new variables vi, we define

t̃(x̄, v̄, ȳ) = ȳjuj(x̄, ȳ) +
∑
|i|<d
i 6=j

viȳ
iui(x̄, ȳ)

so, whenever µj(x̄) is true, we have

t(x̄, ȳ) = aj(x̄)t̃(x̄, v̄′(x̄), ȳ)

where v′i(x̄) = D(ai(x̄), aj(x̄)).
We claim that after a suitable transformation of the variables ȳ, the Weier-

strass preparation theorem can be applied to t̃c̄ defined by:

t̃c(x̄, v̄, ȳ) = t̃(x̄, c̄+ v̄, ȳ)

for any c̄ ∈ I({1,...,d}\{j})n

.
The transformation λ̄(ȳ) is defined by

λk(ȳ) =

{
yk + ydn−k

n if k 6= n

yn if k = n

and it has inverse

ωk(ȳ) =

{
yk − ydn−k

n if k 6= n

yn if k = n

our claim is that t̃c̄(x̄, v̄, λ̄(ȳ)) is regular in yn. Indeed, consider the lexico-
graphically smallest multiindex ι such that ȳι has non null coefficient in the
power series of t̃c̄(0, 0, ȳ): since ui is a unit for every i, |ι| < d (in fact, ι ei-
ther is j or lexicographically smaller than j with cι 6= 0). Now, the series
of t̃c̄(0, 0, λ̄(0, . . . , 0, yn)) has order precisely

∑
n=1,...,n ιkd

n−k, since for any i
lexicographically larger than ι∑

n=1,...,n

ιkd
n−k <

∑
n=1,...,n

ikd
n−k
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so it is regular.
By the Weierstrass preparation theorem

t̃c̄(x̄, v̄, λ̄(ȳ)) = uc̄(x̄, v̄, ȳ) fc̄(x̄, v̄, ȳ)

with fc̄ ∈ Owhatever
0 [yn] and unit uc̄ > 0 (and whatever = m + n + dn − 2).

Hence
t̃c̄(x̄, v̄, ȳ) = uc̄(x̄, v̄, ω̄(ȳ)) fc̄(x̄, v̄, ω̄(ȳ))

and, by taking a function in each germ, the equality holds as well in some
neighborhood Ic̄ of 0.

At this point, for some εc̄ > 0 we have the equivalence

t(x̄, λ̄(ȳ)) > 0 ↔ aj(x̄)fc̄(x̄, v̄′(x̄)− c̄, ȳ) > 0

whenever µj(x̄) is true and the absolute values of v′i(x̄)− ci, xk and yl (for all i,
k and l) are all smaller than εc̄. Observing that yn occurs just polynomially in
aj(x̄)fc̄(x̄, v̄′(x̄)−c̄, ȳ), possibly using the already mentioned trick of multiplying
each term by a small enough constant, we may consider the right hand side of
the equivalence a simple LD

an-formula in which yn occurs just polynomially.
Now the dependency on c̄ can be easily eliminated by compactness of I{1,...,d}n\{j}

and observing that |v′i(x̄) − ci| < εc̄ is (equivalent to) an LD
an-formula. More

precisely, for some ε > 0 and some finite set C of multiindices, whenever µj(x̄)
is true and the absolute values of xk and yl (for all k and l) are all smaller than
ε, t(x̄, λ̄(ȳ)) > 0 is equivalent to∧

c̄∈C

|v′i(x̄)− ci| < εc̄ → fc̄(x̄, v̄′(x̄)− c̄, ȳ) > 0

which, again, is a simple LD
an-formula in which yn occurs just polynomially.

In the end, substituting the former in (*) for each j, for each atomic sub
formula t(x̄, λ̄(ȳ)) > 0 of φ′(x̄, λ̄(ȳ)) we have a simple LD

an-formula in which
yn occurs just polynomially equivalent to it in a neighbourhood of 0. Substi-
tuting them and invoking Tarski’s theorem we accomplish our goal of locally
eliminating one existential quantifier.

5 The full exponential function

We aim to show that the real field expanded by the full exponential function,
which we will denote by Rexp, is model-complete. As remarked in section 2 we
can then conclude that Rexp is o-minimal.

Definition 9. An expansion R̃ of the real field is said to be polynomially bounded
if for all definable functions f : R → R there exists a natural number N such
that |f(x)| ≤ xN for all sufficiently large x.
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Remark 2. One might think that the full exponential function is somehow de-
finable in Ran. If this were the case then the o-minimality of Rexp would follow
directly from the o-minimality of Ran. However this is not the case. Indeed,
in [4] van den Dries proves that the structure Ran is polynomially bounded, and
hence cannot define the full exponential function. There are, however, some
global analytic functions definable in Ran.

Example 2. sin �(−π/2,π/2) and cos �(−π/2,π/2) are both definable in Ran. Con-
sequently tan �(−π/2,π/2) is definable in Ran. We may define tan−1 on R by
saying that it is the inverse map to tan. So 〈R, tan−1〉 is o-minimal.

As remarked above Ran is polynomially bounded and so 〈R, exp �[−1,1]〉 is
polynomially bounded. We now develop some theory of polynomially bounded
o-minimal expansions of the real field. From now on, R̃ will denote such a
structure.

Theorem 10 (Miller [2]). Let f : R → R be definable in R̃. Then there exists
a unique α ∈ R such that f(x)

xα converges to a non-zero finite limit as x→∞.

Exercise 5. With f and α as above, prove that α and x 7→ xα : (0,∞) → R are
definable over the same set of parameters as f . Furthermore, prove that the set
of all such α forms a subfield of R; this is known as the field of exponents of R̃.

From now we will assume that R̃ has field of exponents Q. This is the case
for Ran [4] and hence for 〈R, exp �[−1,1]〉. Let T̃ be the theory of R̃ and let L̃ be
it’s language. Let M = 〈M,<, . . .〉 � T̃ . We define

µ(M) := {x ∈M : ∀q ∈ Q>0 |x| < q}
Fin(M) := {x ∈M : ∃q ∈ Q>0 s.t. |x| < q}.

F in(M) is a subring ofM and µ(M) is the unique maximal ideal of Fin(M).
In [5] van den Dries shows that the field K := Fin(M)/µ(M) can be expanded
to an L̃ structure K̃ such that, up to isomorphism, K̃ can be elementarily
embedded in M. In fact the embedding can be chosen so that each µ(M)
equivalence class of Fin(M) contains exactly one element of K̃.

Now Fin(M)\µ(M) is a subgroup of the multiplicative group ofM, M\{0}.
We let Γ be the quotient

(M\{0})/(Fin(M)\µ(M)),

which we will write additively, and we let v : M\{0} → Γ be the quotient map.
Observe that since M is real closed Γ is divisible and hence a Q-vector space.

Recall from [3] that the definable closure operator is a pregeometry in o-
minimal structures so we have a notion of dimension. Furthermore, since o-
minimal expansions of groups have definable Skolem functions, the dimension
of our structure M is given by:

inf{n : ∃n elements ofM which generateMunder 0-definable Skolem functions}.
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Theorem 11 (The valuation inequaliy [6]). With M, K̃ and Γ as above, if
dim(M) is finite then

dim(M) ≥ dim(K̃) + dimQ(Γ).

We also have a relative version of the valuation inequality: let K1,K2 � T̃ such
that K1 4 K2. Let Γ1, Γ2 denote the value groups of K1, K2 and K̃1, K̃2 be
their residue fields. If dimK1(K2) is finite then

dimK1(K2) ≥ dimQ(Γ1/Γ2) + dimK̃1
(K̃2).

For our purposes we will only use the fact that dimK1(K2) ≥ dimQ(Γ2/Γ1).
Unravelling the statement, this means: if dimK1(K2) = p, and a1, . . . ap+1 ∈
K2 then there exists n1, . . . , np+1 ∈ Z, not all zero, and c ∈ K1 such that
can1

1 . . . a
np+1
p+1 ∈ Fin(K2) \ µ(K2).

5.1 Proof of model completeness of Rexp

Let Texp denote the theory of Rexp. Let M1,M2 � Texp and suppose that
M1 ⊆M2. We claim that M1 4∃1 M2 and hence that Texp is model complete.

Sketch proof of claim. Let F (x1, . . . , xn) be a simple term with parameters in
M1 and assume that there exists a1, . . . , an ∈M2 such that F (a1, . . . , an) = 0.
By Robinson’s test and theorem 4 it is sufficient to prove that there exists
b1, . . . , bn ∈M1 such that F (b1, . . . , bn) = 0.

Step 1 F (x1, . . . , xn) is of the form P (x1, . . . , xn, e
x1 , . . . , exn) where P (x̄, ȳ) ∈

M1[x̄, ȳ]. We construct P1, . . . , Pn ∈M1[x̄, ȳ] and ā′ ∈M2
n such that ā′

is a non-singular zero of the system of equations

Pi(x̄, ex̄) (i=1,. . . ,n) (2)

and a zero of
P (x̄, ex̄). (3)

Step 2 We prove that if ā′ is a non-singular of the system (2) which is bounded
between elements of M1 (ie. there exists b ∈ M1 such that |a′i| < b for
i = 1, . . . n) then in fact ā′ lies in M1.

Step 3 It now remains to prove that any non-singular zero of the system (2)
in M2 is bounded between elements of M1. This is where we will use
the valuation inequaltiy and the model completeness of 〈R, exp �[0,1]〉. Let
〈b1, . . . , bn〉 be a non-singular solution of (2). We consider the structures
M∗

1 := 〈M1, exp �[ −1, 1]〉 and M∗
2 := 〈M2, exp �[ −1, 1]〉, where the

bar indicates the ordered field structure only. Let K2 be the elementary
substructure of M∗

2 generated by b1, . . . , bn, e
b1 , . . . , ebn and M∗

1. Then

12



dimM∗
1
K2 ≤ n, therefore by the valuation inequality, for each r = 1, . . . , n

there exists c ∈M∗
1 and a0, . . . , an ∈ Z not all zero such that

cba0
r

n∏
i=1

eaibi ∈ Fin(K2) \ µ(K2).

By some combinatorial arguments we can now find a′1, . . . , a
′
n ∈ Z not

all zero and α ∈ M∗
1 such that −α ≤

∑n
i=1 a

′
ibi ≤ α. Now by a linear

transformation of variables we may suppose that −α ≤ bn ≤ α. Now use
an inductive argument.
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